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1. INTRODUCTION

Natural and man-made pores and channels of nanoscale
dimensions display unique ionic conductivity behavior, not
observed in their microscale counterparts.1�5 These new proper-
ties emerge when channels are narrowed to the characteristic
length scale of the electrostatic interactions (the Debye length).
On the other hand, nanopores modified with supramolecular
chemical species (such as polyelectrolyte brushes6) have dimen-
sions that not only are similar to the range of the electrostatic
interactions but are also similar to the molecular size of the
tethered macromolecules. The competition between these
length scales creates interesting possibilities for the creation of
stimuli responsive gates and ion channels6�13 and for the
fundamental understanding of the interplay between molecular
organization and charge transport in nanoconfined environments.

Very recently, nanochannels and nanopores modified by
synthetic9,10,12,14�17 and biological11,13,18�21 polymers and poly-
electrolytes have been prepared, and the conductance at the
single pore level has been measured. Polyelectrolyte-modified
nanopores are very appealing for the design of stimuli-responsive
ion gates because grafted macromolecules will affect the trans-
port properties, but also because the conformations and proper-
ties of the confined molecules will be modified by the ionic

currents flowing through the system. As an interesting example,
ion current rectification in DNA-modified conical nanopores was
proposed to arise from the electrophoretic insertion/expulsion of
grafted DNA into/from the mouth of the pore as a response to
the applied bias.22

Our understanding of the systems described above is limited
by the fact that the state of the art theoretical descriptions of ionic
conductance in nanopores (based on theNernst�Planck�Poisson
(NPP) equations1) neglect the molecular details of the macro-
molecular structures inside the pore and the free species in
solution, as well as their response to and their impact on the ionic
fluxes through the system. Namely, the NPP approach considers
only the electrostatic interactions in the system because it
assumes that all the species are point ions and neglects excluded
volume and other non-Coulomb interactions. An improved
theoretical picture of the conductance of chemically modified
nanofluidic devices is important to understand and design
applications in diverse areas, such as energy transduction,23,24

analytical chemistry,25�27 ionic circuits,28 or proton exchange
membranes.29
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ABSTRACT: Chemically modified nanopores show a strong and nontrivial
coupling between ion current and the structure of the immobilized species. In this
work we study theoretically the conductance and structure in polymer modified
nanopores and explicitly address the problem of the coupling between ion
transport and molecular organization. Our approach is based on a nonequilibrium
molecular theory that couples ion conductivity with the conformational degrees of
freedom of the polymer and the electrostatic and nonelectrostatic interactions
among polyelectrolyte chains, ions, and solvent. We apply the theory to study a
cylindrical nanopore between two reservoirs as a function of pore diameter and
length, the length of the polyelectrolyte chains, their grafting density, and whether
they are present or not on the outer reservoir walls. In the very low applied potential regime, where the distribution of polyelectrolyte
and ions is similar to that in equilibrium, we present a simple analytical model based on the combination of the different resistances in
the system that describes the conductance in excellent agreement with the calculations of the full nonequilibrium molecular theory.
On the other hand, for a large applied potential bias, the theory predicts a dramatic reorganization of the polyelectrolyte chains and
the ions. This reorganization results from the global optimization of the different interactions in the system under nonequilibrium
conditions. For nanopores modified with long chains, this reorganization leads to two interesting physical phenomena: (i) control of
polyelectrolyte morphology by the direction and magnitude of ion-fluxes and (ii) an unexpected decrease in system resistance with
the applied potential bias for long chains due to the coupling between polyelectrolyte segment distribution and ion currents.
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In this work we present the first theoretical description of
steady-state ionic fluxes through short nanopores modified with
supramolecular structures. Our theoretical framework combines
a previously developed molecular theory that is very well suited
to describe soft materials at interfaces30�34 with a description of
the molecular transport in the system. The theory can predict the
off-equilibrium molecular organization of the system and its
transport properties, such as the current�potential (I vs ΔV)
curves. Moreover, it provides a link between these two proper-
ties, and thus it can lead to design principles for chemically
modified nanofluidic elements.

For large applied bias and short pores, we show that ionic
currents strongly couple to polyelectrolyte conformations and
ion distribution. This complex molecular organization out of
equilibrium is predicted to produce nonohmic behaviors. For
instance, the coupling between polyelectrolyte reorganization
and ion currents can lead to an increase in the pore conductance
with the applied potential bias. For small applied potentials, we
present a simple model to describe the conductance and validate
it using the full nonequilibrium molecular theory.

The systems studied in the present work are shown in Figure 1.
System I consists in a single nanopore of radius R and length L
connecting two reservoirs. Both reservoirs contain the same salt
solution, composed of solvent (water), cations, and anions.
Polyelectrolyte chains of length N and a fixed (positive) charge
per monomer f are end-grafted to the inner walls of the pore with
a surface density FG. Our model system corresponds to a strong
(nonregulating) polyelectrolyte; several examples of these poly-
electrolytes have been used in single nanopores or nanopore
membranes, such as poly(sulfonates),29,35 DNA,18,19,22 or poly-
(quaternary amines).36 System II is similar to system I, but chains
are also grafted to the outer walls (also with a surface density FG) up
to a distance RP from the axis of the pore. Ionic currents result from
applying an electrostatic potential biasΔV between the bulk solutions
at the reservoirs (i.e., by means of two reversible electrodes).

2. THEORY

We present in this section a concise description of the none-
quilibrium theory. Its formulation follows the ideas of the local
equilibrium approximation,37,38 namely, we assume that the
thermodynamic variables in the system can be defined locally
and the equilibrium functional relationships among them are still
valid out of equilibrium. These ideas have been previously used
to couple transport equations and density functional theories to
describe fluxes in solvent mixtures,39 ion transport in bare nano-
pores,40 protein adsorption on bare and polymer modified
surfaces,41�43 etc. In one of these examples, the theoretical predic-
tions for the steady-state transport in a simple two-component
system were found to be in excellent agreement with none-
quilibrium molecular dynamics simulations.39

The presence of chemical potential differences or gradients
within a system drives mass fluxes from high chemical potential
to low chemical potential regions. In our system, chemical
potential differences for the ions arise from the externally applied
bias. Therefore, we start by writing down an expression for the
mass fluxes in the system as a function of the chemical potential
gradients, which we will consider within the linear response
regime. Neglecting the cross-terms associated with the off-
diagonal elements in the Onsager coefficient matrix we have,

Jiðr, tÞ ¼ �DiFiðr, tÞ∇βμiðr, tÞ ð1Þ
whereDi is the diffusion coefficient of the species i (i = A and C),
μi(r, t) and Fi(r, t) are the chemical potential and the density of
the species i at r and time t, respectively, and β = 1/kBT. Equation
1 describes the flux of the average densities and is equivalent to
the general expression previously derived from the Langevin
equations of motion for a system of colloidal particles in a
bath.44,45 The chemical potential in eq 1 is defined in analogy
to the equilibrium potential:

βμiðr, tÞ ¼ δβW
δFiðr, tÞ

ð2Þ

where W is the free energy of the system.
For any system, we can separate the ideal from the nonideal

contributions to the chemical potential in the form

βμiðr, tÞ ¼ lnðFiðr, tÞvwÞ þ βUmf
i ðr, tÞ ð3Þ

where the first term on the right-hand side is the ideal contribu-
tion to the chemical potential arising from the translational
entropy andUi

mf(r, t), the potential of mean force for the species
i, represents the nonideal contribution that arises from intramo-
lecular interactions and the presence of external fields. This
nonideal contribution is a position-dependent activity coeffi-
cient, ϕi(r, t) = exp(�βUi

mf(r, t)). Combining eqs 1 and 3 yields

Jiðr, tÞ ¼ �Di∇Fiðr, tÞ �DiFiðr, tÞ∇βUmf
i ðr, tÞ ð4Þ

This expression shows that the diffusion in the system can be
separated into an ideal diffusion term, which is entropic in origin
and gives rise to Fick’s first law (first term) and a nonideal
contribution (second term), as has been shown for the adsorp-
tion of proteins on surfaces with grafted polymers.42,43,46

The calculation of the chemical potential in eq 2 requires an
expression for W that in our case is based on a previously
reported molecular theory for polyelectrolytes grafted to curved
surfaces31,32 adapted here to describe a short pore connecting
two reservoirs.47 The molecular theory explicitly accounts for

Figure 1. Scheme of the systems under study: a single cylindrical pore
of radius R in a membrane of thickness L. The membrane separates two
infinite reservoirs containing identical aqueous solutions of a 1:1 salt;
more specifically, the solutions contain cations (C), anions (A), and
water molecules. The inner walls of the pore (system I) or both the inner
and outer walls up to a radius RP (system II) are modified with polybase
chains at a constant grafting density FG. Each chain bears N monomers,
each one having a charge f. Ion transport in the system results from
applying an electrostatic potential difference ΔV between the bulk
solutions of the reservoirs (i.e., by means of reversible electrodes). We
adopt the convention V � 0 for the lower reservoir.
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the shape, charge, size, and conformational degrees of free-
dom of all the species in the system and the relevant inter- and
intramolecular interactions. The predictions of the theory
have been found to properly describe structural, thermo-
dynamic, and functional properties of charged polyelectro-
lytes as compared with experimental observations.32�34,48

In particular, we have shown that the theory is able to pre-
dict the pH-dependent conductance of polyelectrolyte-
modified long nanochannels in excellent agreement with the
experiments.32

We start by writing down an expression for the system
Helmholtz free energy, F, as a functional of the probability of
each conformation α at each grafting position, PP(r(s),α, t); the
density of the free molecular species in solution at r and time t,
Fi(r, t) where i = w, C, A for water, cations, and anions and the
electrostatic potential at r and time t, ψ(r, t). The total free
energy is given by

βF ¼
Z

Fwðr, tÞ½lnðFwðr, tÞvwÞ � 1�dr þ
Z

FAðr, tÞ½lnðFAðr, tÞvwÞ � 1�dr

þ
Z

FCðr, tÞ½lnðFCðr, tÞvwÞ � 1�dr

þ FG

Z
∑
α

PPðrðsÞ,α, tÞlnðPPðrðsÞ,α, tÞÞds

þ
Z

ÆFQ ðr, tÞæβψðr, tÞ �
1
2
εð∇ψðr, tÞÞ2

� �
dr ð5Þ

where ε is the dielectric constant (assumed to be position and
time independent), vi is the molecular volume of the species i,
ÆFQ (r, t)æ is the average total charge density at r and time t, and
r(s) is a parametrization of the surface where the polyelectrolytes
are grafted. The first three terms in eq 5 account for the trans-
lational (mixing) entropy of the mobile species, the fourth term is
the total conformational entropy of the polymer chains, and the
last term represents the electrostatic contributions to the free
energy. Repulsive interactions among molecular species in the
system are modeled as excluded volume repulsions and are taken
into account by a packing constraint at each r:

FAðr, tÞvA þ FCðr, tÞvC þ Fwðr, tÞvw þ ÆϕPðr, tÞæ ¼ 1 ð6Þ

where ÆϕP(r, t)æ is the polyelectrolyte volume fraction at r and
time t. To enforce this requirement, we consider the potentialW,
which is a Legendre transform of F,

βW ¼ βF þ
Z

βπðr, tÞ½ ∑
i¼A, C, w

Fiðr, tÞvi þ ÆϕPðr, tÞæ� 1�dr ð7Þ

where π(r, t) is the Lagrange multiplier associated with the
excluded volume interactions. In equilibrium, this field intro-
duces an excluded volume contribution to the chemical potential
of the solvent that balances that arising from the local solvent
density, and therefore π(r, t) is a position-dependent osmotic
pressure.49

We then insert eq 7 into eq 2 to get

βμiðr, tÞ ¼ lnðFiðr, tÞvwÞ þ viβπðr, tÞ þ qiβψðr, tÞ ð8Þ

where qi is the charge of the species i. Substituting eq 8 into eq 1
gives us an explicit expression for themass fluxes of the ions in the
system:

Jiðr, tÞ ¼ �Di∇Fiðr, tÞ �DiFiðr, tÞqi∇βψðr, tÞ
�DiFiðr, tÞvi∇βπðr, tÞ ð9Þ

Comparison of eqs 8 and 9 with eqs 3 and 4 reveals that
βUi

mf(r, t) = βπ(r, t)vi + qiβψ(r, t), and therefore in our case the
potential of mean-force has contributions from the osmotic
pressure, which represent intermolecular repulsive interactions
and the electrostatic potential. However, since the electrostatic
potential and the osmotic pressure are determined by the distribu-
tion of all molecular species in the system, the potential of mean
force effectively couples the position-dependent fluxes of the
mobile species with the local density of all molecules: the mobile
ions, solvent, and polyelectrolyte chains. As shown in this work,
this coupling creates a link between the externally applied potential
bias, the conformations of the polyelectrolyte in the channel,
the local ionic concentrations and the ionic conductance of the
nanopore.

Wewill assume that the fieldsψ(r, t) andπ(r, t) correspond to
an extremum of W, and therefore the electrostatic potential
instantaneously adapts to any change in the charge distribution of
the system and the packing constraint is instantaneously fulfilled.
The extremum of W with respect to ψ(r, t) yields the Poisson
equation

ε∇2ψðr, tÞ ¼ � ÆFQ ðr, tÞæ ð10Þ
where ÆFQ(r)æ is the charge density at r computed from the
contribution of all charged species in the system. The extremum
ofW with respect to π(r, t) yields the packing constraint, eq 6. It
should be stressed that obtaining the Poisson equation for the
relationship between the charge density and the electrostatic
potential is a check of the consistency of the approach, since the
Poisson equation always holds true.

The introduction of the packing constraint reduces the
number of independent chemical potentials in the system by
one. As a consequence, the chemical potentials in the theory are
exchange chemical potentials.31 In other words, μi(r, t) repre-
sents the work of placing a molecule of type i at r while removing
the equivalent volume of solvent molecules from the same
position, see Supporting Information. Because the exchange
chemical potential of the solvent is zero by definition, we have:

δβW
δFwðr, tÞ

¼ lnðFwðr, tÞÞ þ βπðr, tÞvw ¼ 0 ð11Þ

and from there it follows

Fwðr, tÞ ¼ expð � βπðr, tÞvwÞ ð12Þ
This equation is the same as that obtained for the equilibrium

case,31 and it is a direct consequence of assuming that the packing
constraint is instantaneously fulfilled.

At this point we introduce the steady-state condition. As a
consequence, several simplifications to the general theory can be
made. For instance, all variables are considered to be time-
independent hereafter, and the following continuity equation is
imposed:

∂FiðrÞ
∂t

¼ �∇JiðrÞ ¼ 0 ð13Þ
The polyelectrolyte chains are grafted to the pore walls, and

therefore net mass fluxes of polymer cannot occur. Furthermore,
in the steady state, the probability of each conformation is



17756 dx.doi.org/10.1021/ja2063605 |J. Am. Chem. Soc. 2011, 133, 17753–17763

Journal of the American Chemical Society ARTICLE

time-independent, and thus the probability distribution of the
polyelectrolyte conformations off-equilibrium will be the one
that minimizes the functional W for the (fixed) density profiles
Fi(r), osmotic and electrostatic potentials that satisfy eqs 9�13.
We thus get

PPðr0,αÞ ¼ 1
ξðr0Þ expf �

Z
nPðr0,α, rÞ½fβψðrÞ

þ vPβπðrÞ�drg ð14Þ

where nP(r0,α,r)dr is the number of segments that a chain in
conformation α and grafted at r0 has in the volume element
between r and r+dr, f is the charge of a monomer segment in
units of elemental charge, and ξ(r0) is a normalization constant
that ensures ∑αP(α,r0) = 1.

In a general context, eq 14 assumes that the end-grafted
polyelectrolyte can relax on the time scale of the experiment.
This is always true in the steady state because the time scale of the
experiment is assumed to be infinite. This condition is also
fulfilled for processes slower than the polyelectrolyte conforma-
tional changes, such as protein adsorption.42 If this approxima-
tion is not valid, kinetic equations for the polymer conformational
changes should be given.

It is interesting to note that neglecting the osmotic pressure
contribution in eq 9 results in the Nernst�Planck equation for
the ions. The Nernst�Planck�Poisson approximation (the com-
bination of the NP and the Poisson equations) has been widely
used to describe ion conductivity in a variety of situations.1,10,57

There are however important differences between our approach
and NPP, in particular the fact that we explicitly include the size,
shape, conformations, and charge distributions of all the molec-
ular species. In other words, the differences between our theory
and the NPP approach are (i) our framework can self-consis-
tently treat the presence of grafted polyelectrolytes in the system,
(ii) it includes excluded volume interactions between all the
molecular species, and (iii) the coupling between the molecular
organization, the charge distribution, and the different interac-
tions leads to a nontrivial coupling between the electrostatic and
osmotic fields that is completely absent in the NPP approach. In
addition, as shown in previous work, the molecular theory can be
easily generalized to consider the presence of chemical equilibria
(acid�base,31 redox,33 ligand�receptor binding,50 etc.), to in-
clude proteins in solution,50 to study the kinetics and thermo-
dynamics of protein adsorption,43 and to consider van der Waals
attractions between the different molecular species in the system.51

In order to solve the theory, we take advantage of the
cylindrical symmetry of the system and assume that the densities,
fields, and fluxes depend only on the r and z coordinates and are
independent of the angular coordinate θ; namely, we solve the
theory considering inhomogeneities in only two dimensions
(r and z). The required inputs are a large set of polymer conforma-
tions for each grafting point in the system, the salt concentration
in the bulk, the applied potential (ΔV) and the molecular details
of the polymer (segment volume and charge), the solvent
molecules (molecular volume), and the ions (molecular volume,
charge, and diffusion coefficient). For simplicity, we will assume
that the diffusion coefficientsDi are those determined for the free
ions in solution. This approximation is based on the high water
content (∼85%) of the grafted polyelectrolyte layers modeled in
this work. As outputs from the calculation, we get the distribution
of the ions and polymer in the system, the electrostatic potential

at each position, and the position-dependent ion fluxes. The total
current through the system, I, can be then determined from the
integration of the axial component of the total ionic fluxes in the
plane normal to the axis passing through z = 0. The reader is
referred to the Supporting Information for more detailed ex-
planations of the formulation, derivation, and solving procedure
of the theory, including how the polymer chain conformations
are generated.

3. RESULTS AND DISCUSSION

3.1. Low Bias Molecular Organization and Conductance.
We start our discussion by considering the case where the applied
bias is very small. In this regime, the distributions of the mobile
species in the system and the conformations of the polymers are
very close to those in equilibrium. In Figure 2A we show color
maps for the polymer volume fraction and current flux lines for
three different scenarios: the bare pore, a pore with chains grafted
only on the inner walls (system I), and a pore with chains grafted
both on the inner and outer walls (system II). For system I, the
figure shows that even though chains are grafted only inside the
pore, there is a finite density of segments in the reservoirs. This
occurs because polymer chains tend to stretch out from the pore
in order to minimize the electrostatic repulsions and the osmotic
pressure and to maximize their conformational entropy.47 For
system II, the brush layer inside the pore shows a density of
polymer segments higher than that on the outer walls (even
though the grafting density is the same in both cases). This effect
is another manifestation of the confined environment inside
the pore.
Figure 2A also shows the current flux lines and vectors for the

different systems under analysis. The current flux lines are
tangential to the current flux vectors at each point. The current
flux vectors indicate the direction and magnitude of the total
ionic current flux, �∑i=A,C|e|qi Ji(r,z) (where |e| is the unit of
elemental charge), at each position. The current flux lines
calculated for the bare pore/reservoirs system run parallel to
the axis inside the pore, and their magnitude is constant along the
r coordinate. In the reservoirs they adopt a hemispherical symmetry
(for example, for the upper reservoir they run normal to the
hemispherical surfaces with an origin at r = 0 and z = L/2). The
size of the blue arrows shows that current fluxes are much
more intense inside the pore than in the reservoirs (note that
the blue arrows far away from the pore are too small to be seen).
This is because the total ionic current flows through a cross-section
area of πR2 inside the channel but through a larger area of 2πr2 for
a hemispherical shell of radius r (r > R) in the reservoirs.
For system I, current flux lines inside the pore are affected by

the presence of the grafted polyelectrolyte. Namely, current
fluxes are higher in the regions of the pore with high polyelec-
trolyte density. In order to explain this observation, let us turn to
our previous work on the pH-dependent conductance of long
nanochannels.32 We have shown there that the predicted con-
ductance is governed by the incorporation of counterions inside
the channel that is required to compensate the charge of the
grafted polyelectrolytes. This local increase in the number of
charge carriers produces an increase in the conductance of the
polyelectrolyte-modified channel with respect to the unmodified
one. This result was found to quantitatively agree with the
increase in conductivity observed for a long nanochannel mod-
ified by protonated poly(vinyl pyridine) with respect to the bare
one.9,32 It is also in qualitative agreement with experiments in
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biconical nanopores asymmetrically modified with poly(acrylic
acid) brushes that display an ‘open state’ conductance (i.e., for
basic pH and negatively applied voltages) that is larger than that
measured before the grafting process.12 The same mechanism
described for long channels is predicted to operate in the
nanopore. Figure 2B shows that, in fact, the anion concentration
for short nanopores follows the distribution of the positively
charged polymer segment density and can be as high as 2 M (i.e.,
20 times larger than the bulk solution ionic strength of 0.1 M) in
polyelectrolyte rich regions. While the concentration of coun-
terions is predicted to be enhanced by a factor of 20 inside the
polymer brush with respect to that in the bulk solution, the
concentration of co-ions (cations) in the polyelectrolyte-rich
regions drops almost by the same factor (note however that the
total concentration of charge carriers inside the pore, anions plus
cations, is enhanced).
The current flux lines inside the pore for system II behave in

the same way as those for system I. On the other hand, the
current fluxes in the reservoir for system II are enhanced close to
walls due to the presence of the polyelectrolyte brush. Far away
from the surface of the membrane, the current flux lines in the
reservoir retain their hemispherical symmetry.
In Figure 3 we show the total conductance of the pore, G (G =

1/Ω, where Ω is the pore resistance) as a function of its length
for the different systems described above and two different
(experimentally relevant) grafted polymer surface coverages.
The effect of increasing the surface coverage for pores of any
length for the systems shown in Figure 3 is to produce a higher
local counterion concentration and thus an increase in the
conductance of the system. All curves present two well-defined
regimes.52 For L , R, the conductance is independent of L

because the electrical resistance of the whole system is dominated
by that of the reservoirs. In this regime, the conductances
predicted for system I and for the bare pore/reservoirs system
converge to the same value as L decreases because the reservoirs
are identical in both systems. On the other hand, the conduc-
tance of system II for L , R is higher than that of system I
because the polyelectrolyte chains grafted to the outer walls
enhance the counterion concentration close to the membrane
with the subsequent decrease in the access resistance. It is
noteworthy that grafting chains to the outer walls can increase
the low bias conductance of the system by a factor of∼2 for short
nanopores. In other words, any increase in conductance observed
for very short pores upon grafting a polyelectrolyte layer would
probably result from the modification of the outer surface rather
than from the modification of the pore itself.
For L . R, the conductance decreases as L because the total

resistance is dominated by that of the solution inside the pore. In
this regime the conductance is sensitive to the inner chemistry of
the pore but not to the chemistry of the outer walls: the pre-
dictions for system I and II converge to a value higher than that
for the bare pore. Under these conditions, the conductance of the
system can be well described within the GCF approximation53

(dashed lines in Figure 3). It is interesting to note that the
formulation of the nonequilibriummolecular theory presented in
this work is very well suited to model short nanopores (L < 1
μm), but the calculations become prohibitively expensive for
very long channels. On the other hand, the combination of GCF
approximation and the molecular theory presented in ref 32 is
valid for long nanochannels (L > 1 μm), but the approximation
breaks down for short pores. Both approaches are therefore
complementary and are based on the same free energy formalism.
The factor controlling the local conductance for the systems in

Figures 2 and 3 is the local enhancement in the counterion
concentration due to the grafted polyelectrolytes, which is
reasonable for highly charged polyelectrolytes. The effect of
neutral end-grafted polymers (or even weakly charged poly-
electrolytes) on ionic conductance is completely different, as
shown next. In a pore modified with a neutral polymer, the
current fluxes close to the pore inner walls are smaller than those
close to pore axis (Figure 4A) because the concentration of both

Figure 2. A. Polymer volume fraction color maps for a cut along a plane
containing the pore axis for a bare pore, system I (chains tethered inside
the pore) and system II (chains tethered inside and outside the pore)
under a low applied bias (ΔV = +10 mV) for a positively charged
polyelectrolyte (charge per monomer, f = 0.5). Blue arrows show the
direction and magnitude of the current flux vectors, and black lines are
the flow lines for this vector field. For better visualization, different scales
have been used for the current flux vectors in different panels: an arrow
of length 1 nm represents 1.3� 10�13 A 3 nm

�2 for the bare pore, 3.3�
10�13 A 3 nm

�2 for system I, and 5.0 � 10�13 A 3 nm
�2 for system II. B.

Molar anion concentration color maps for the systems in A (note that a
logarithmic scale have been used). Calculation parameters: chain length,
N = 20; surface coverage, FG = 0.5 nm�2; pore radius, R = 7.5 nm; pore
length, L = 16 nm; bulk salt concentration, Csalt = 0.1 M. For system II
chains are grafted to the outer wall up to RP = 39.5 nm.

Figure 3. Low bias (ΔV = 10 mV) conductance for the bare pore,
system I and system II as a function of pore length, and two different
surface coverages (for system I and II): 0.1 nm�2 (A) and 0.5 nm�2

(B). Symbols and solid lines show the predictions of the steady-state
molecular theory and the simple conductance model, respectively.
Dashed blue lines show the predictions of the molecular theory using
the GCF approximation for the conductance calculation as described in
ref 32 (valid for long pores). Calculation parameters: chain length, N =
20; charge per monomer, f = 0.5; pore radius, R = 7.5 nm; bulk salt
concentration, Csalt = 0.1M. For system II chains are grafted to the outer
wall up to RP = 39.5 nm.
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negative and positive ions in the polymer-rich region is depleted
(Figure 4B). This drop in local ion concentration inside the pore
is the same for cations and anions and can be traced back to
excluded volume interactions. As a result of the decrease of the
number of charge carriers in the pore, the conductance of the
polymer-modified pore is smaller than that of a bare pore
(Figure 4C). This result is in agreement with recent experimental
results where a drop in conductance was observed upon grafting
weakly charged proteins into a single short pore.54 We also
observe that the drop in conductance is larger in long channels
than in short nanopores because in the latter the total resistance
is dominated by that of the reservoirs.
Because salt ions in solution screen the Columbic forces in the

system, it is interesting to analyze how the ionic strength affects
the balance between electrostatic and excluded volume interac-
tions. As shown above, the conductance for system I in Figure 3
(0.1 M bulk ionic strength) is enhanced with respect to the bare
pore due to counterion uptake by the brush. In that case, the low
potential bias conductance for the polyelectrolyte-modified pore
is 20 nS in comparison with 9.5 nS for the bare pore. However, in
a 1.0 M electrolyte solution the excluded volume interactions
become dominant and the conductance of the polyelectrolyte-
modified pore (82 nS) is slightly smaller than that predicted for
the bare one under the same conditions (95 nS).
While the molecular theory provides detailed predictions on

the organization and ionic conductance of the nanopore, simpli-
fied analytical models are useful for routine analysis of experi-
mental data and for understanding the physical mechanisms that
govern the behavior of the system. We present here a simplified
model (derived and described in detail in the Supporting In-
formation) in which the system resistance is approximated as
the in series combination of the pore and reservoirs (access)
resistances. For each reservoir, the access resistance is further
subdivided into two contributions: (i) the resistance from the
bulk up to r = R (border of the pore) and (ii) the resistance of the
hemisphere located at the mouth of the pore (the hemisphere of

radius R centered at r = 0 and z = �L/2 or L/2). The first
contribution accounts for both the conductance through the bulk
solution and (for system II) through the brush grafted to the
outer walls. The resistance according to the simplified model is
given by

Ω ¼ 1
πσs

σs

hwσw
ln R þ hwσw

σs

� �
� lnðRÞ

� �� �

þ 1
π

L

hið2R � hiÞσi þ ðR � hiÞ2σs

þ 1
2
� 1
π

� �
1

σsR
ð15Þ

where the terms on the right-hand side represent the reservoir
resistance from infinity up to the edge of the pore, the resistance
of the pore itself, and the resistance of the hemisphere located at
the mouth of the pore, respectively. In eq 15, σs is the
conductance of the bulk solution which is estimated from the
bulk salt concentration and ion mobilities, σi and hi are the
conductance of the solution confined inside the brush layer
grafted to the pore inner walls and the thickness of this layer,
respectively, and σw and hw are the conductance of the solution
confined in the brush grafted to the outer walls and the thickness
of the brush, respectively. Equation 15 can be further simplified
for the different cases under study. The parameters of eq 15 can
be estimated using Donnan partition arguments55,56 from the
polyelectrolyte surface coverage, the number of segments per
chain, and the charge per segment as explained in the Supporting
Information. The resulting expressions are:

Ω ¼ 1
πσs

2Csalt

fFGN
ln R þ 1

2
fFGN
Csalt

� �
� lnðRÞ

� �" #

þ 1
π

CsaltL
fNFGRσs

þ 1
2
� 1
π

� �
1

σsR
ð16Þ

for system II;

Ω ¼ 1
2Rσs

þ 1
π

CsaltL
fNFGRσs

ð17Þ

for system I and

Ω ¼ 1
2Rσs

þ 1
πσs

L
R2

ð18Þ

for the bare pore.
The conductance (G = 1/Ω) predicted by these equations is

shown (solid lines in Figure 3) to be in good agreement with the
prediction of the full nonequilibrium molecular theory. It is
worthwhile to note that this comparison requires no fitting para-
meters. Furthermore, for the bare pore/reservoirs system, the
conductance can be expressed as a function of a single universal
variable, L/R (the aspect ratio). In the Supporting Information
we show that the prediction of nonequilibrium theory and the
simple model for this system are in very good agreement for
several combinations of R and L. The small discrepancies
between the molecular theory and the simple analytical model
observed in Figures 3, and Figure 3S in Supporting Information,
for very short pores (both bare or polyelectrolyte modified) may
have an origin in the approximations made to calculate the
resistance at the mouth of the pore.

Figure 4. A. Polymer volume fraction color maps for a cut along a plane
containing the pore axis for a pore modified with neutral (f = 0) chains
(grafted only inside the pore) under a low bias (ΔV = 10 mV). An arrow
of 1 nm indicates a current flux vector of 1.3.10�13 A 3 nm

�2. B. Molar
anion (left) and cation (right) ion concentration color maps for the
system shown in A. C. Low bias (ΔV = +10 mV) conductance for the
bare pore and a pore with neutral polymers as a function of the pore
length. Calculation parameters: chain length, N = 20; pore radius, R =
7.5 nm; pore length, L = 16 nm (for panels A and B); bulk salt
concentration, Csalt = 0.1 M.
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We should finally briefly comment on the range of application
of eqs 16�18. These equations have been derived to describe
nonregulating polyelectrolytes and thus are valid only for strong
polyelectrolytes or for weak polyelectrolytes in solutions of pH
very far from the monomer pKa (pH . pKa for polyacids or
pH , pKa for polybases). Further, they are valid only for low
applied potentials, because (as shown in the next section) ion and
polyelectrolyte reorganization occurs at high ΔV.
3.2. Large Applied Bias Molecular Organization and Ionic

Conductance. For large applied potential bias, the distribution
of ions and polyelectrolyte in the system can dramatically differ
from that in equilibrium. In Figure 5A we show the predicted

polymer volume fraction color maps for a short pore with
polyelectrolytes grafted only at the inner walls (system I) in
equilibrium (ΔV = 0, I = 0) and in the steady state for an applied
potential that gives a current I = 4.5 nA. The dimensions of the
pore (L = 20 nm and R = 7.5 nm) correspond to the typical
dimensions of pores drilled in SiN membranes.57 The two systems
shown in Figure 5A present both different chain lengths (N = 10
and N = 60) and surface coverages (FG = 0.3 and 0.05 chains 3
nm�2, respectively). These parameters were chosen in order to
keep constant the product N.FG because this product controls
the contribution of the pore to the total conductance of the pore/
reservoirs system in the low applied bias limit (see eqs 16 and
17). In other words, we will compare pores with the same total
number of polymer segments but different chain lengths and
surfaces densities. Note also that we compare systems with the
same total ionic current instead of the same applied potential
because the former parameter is more relevant for the ionic
concentration polarization effects,58�60 see below. The plots in
Figure 5A show that the positively charged polyelectrolytes are
repelled from the positively biased reservoir and that the
magnitude of the effect dramatically depends on chain length.
It is important to note that the deformation of the polymer layer
due to the applied bias is a consequence of the ionic currents
flowing through the system, which determine the electrostatic
potential felt by the polyelectrolyte chains. These forces can be
measured, as was demonstrated for DNA chains in solid-state
nanopores.61 Moreover, electromechanical manipulation of
polyelectrolytes in nanopores has been proposed as a method
to gate ionic currents.62 As an example, the insertion/expulsion
of DNA layers grafted inside conical nanopores driven by applied
bias was proposed to block/unblock the mouth of the pore,
creating a rectifying behavior.22,63 Ionic rectification due to
electromechanical gating has been proposed also for trapped
DNA threads in biological nanopores.64

The effect of chain length on the degree of polyelectrolyte
deformation can be understood in terms of the fraction of
segments located at the upper half of the pore (with respect to
the total number of polymer segments in the system) as a
function of the total current passing through the system. This
fraction is defined as:

αP ¼

Z ∞

0
dz
Z ∞

0
rdrÆϕPðr, zÞæZ ∞

�∞
dz
Z ∞

0
rdrÆϕPðr, zÞæ

ð19Þ

where ÆϕP(r, z)æ is the volume fraction of polyelectrolyte
segments at r and z. The limiting values of αP are 0 (all segments
at z < 0) and 1 (all the segments at z > 0). In equilibrium, the
system is symmetric and thus, αP = 0.5. Figure 5B shows a plot of
αP vs the total ionic current (I) for the systems in Figure 5A and
two additional systems with different chain lengths (but with the
sameNFG). Applying a positive bias to the upper reservoir causes
the positively charged chains to stretch toward the lower
reservoir and thus αP < 0.5 for all ΔV > 0. The degree of
deformation increases with the chain length as a consequence of
the increase in polymer flexibility.
The distribution of the polymer volume fraction inside the

pore is regulated by the competition between the length of the
chain and the length of the pore. For example, in Figure 6A we
compare the system ofN = 60 for I = 0 and 2 nA and two different
pore lengths: 20 and 128 nm. The reorganization in the short

Figure 5. A. Polymer volume fraction color maps for a cut along a plane
containing the pore axis for system I (chains tethered inside the pore) for
N = 10, FG = 0.3 chains 3 nm

�2 (upper panels) and N = 60, FG = 0.05
chains 3 nm

�2 (lower panels). Plots are shown for I = 0 (ΔV = 0, right
panels) and I = 4.5 nA (ΔV = 0.5 V for N = 10 and ΔV = 0.28 V for
N = 60, left panels). Other calculation parameters: pore radius, R =
7.5 nm; pore length, L = 20 nm; bulk salt concentration, Csalt = 0.1 M.
The same color scale has been used for all plots. B. Plot of the excess of
segments at z > 0 (upper half of the pore) as defined in eq 19 as a
function of the total ionic current through the system.
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pore is more dramatic than in the long one, which is supported by
the values of αP of 0.24 and 0.45 for L = 20 and 128 nm,
respectively (for an infinitely long pore, the value of αP should
approach 0.5). For the long pore, the effect of the applied
potential on the polyelectrolyte density is only apparent at pore
entrances. However, this observation does not imply that the
conformations of the chains inside the long pore are insensitive
to the applied bias. For instance, the single chain density plots for
a polyelectrolyte end-grafted in the middle of the pore (zgraft = 0)
shown in Figure 6B indicate that chain deformation for I = 2 nA
occurs both for the long and short pores. Inside the long pore the
optimal polymer densities in equilibrium and under an applied
bias are the same, although the molecular organizations of the
chains giving rise to these density profiles are different. Single
chain profiles in equilibrium (I = 0 nA) show an elongation in the
axial direction for the chains in the short pore. This effect is
caused by the presence of the reservoirs as discussed in a previous
publication.47

We have chosen to compare systems with the same current in
Figure 6, and thus the applied bias for the short pore (0.15 V) is
smaller than that for the long one (0.40 V). Comparing systems
at constant potential will yield much lower currents for long
nanochannels in comparison with short pores and therefore less
polymer deformation. For very long nanochannels under mod-
erate applied potential biases, polymer deformation will not
occur and the equilibrium structure determines the conductance
of the pore (GCF approximation).32

Figure 7 shows the electrostatic potential for the systems in
Figure 5A. It is clear that the electrostatic potential has contributions
from both charges on the polyelectrolyte and the externally applied
bias (see plots for N = 10). However, it is worthwhile to point out

that the electrostatic potential is not the sumof the externally applied
bias and the field created by the polyelectrolyte in equilibrium
because, as we have shown above, there is a redistribution of the
polyelectrolyte and ions due to the applied electrostatic potential.
Since the conductance is determined by ion distribution, it is

insightful to analyze how the concentration of the majority carriers
(anions) evolves as a function of the applied bias. Figure 8 shows
color maps of the concentration of anions for the systems in
Figure 5A and 7. We note that the anion concentration in the
steady state presents a depletion region close to the pore entrance in
the lower reservoir and an enhancement region at the mouth of
the upper one. This effect is known as concentration polarization
and arises due to the presence of charges on the inner pore
surface.58�60,65 Briefly, the concentration polarization regions
develop when the mass diffusion of the majority carrier from the
bulk to the pore entrance cannot sustain the current through the
pore. Therefore, in the lower reservoir the concentration near the
pore entrance decreases in order to create a concentration
gradient to drive the diffusion flux from the bulk into the pore.
Following the same explanation, a concentration gradient also is
developed in the upper reservoir (and therefore an enhancement
region shows up) in order to increase the flux of anions from pore
mouth to the upper bulk solution. The concentration of the
minority carrier (cations not shown) follows a similar distribu-
tion to that of the majority carrier because separating ionic
charges beyond a few nanometers in aqueous solution implies a
very high energy cost (note however that our theory does not
impose local electroneutrality).
The concentration profiles along the pore axis (plotted in

Figure 8B) show that upon applying the potential bias there is an
increase in the total anion concentration inside the pore for the
two chain lengths under study, similar to that described for a pore
bearing a surface charge in ref 58. The profiles also show the
concentration polarization depletion region that develops just on
the pore entrance. This mechanism is supported by the plots of
the excess of anions and cations in the upper half of the system

Figure 6. A. Polymer volume fraction color maps for a cut along a plane
containing the pore axis for system I (chains tethered inside the pore) for
N = 60, FG = 0.05 chains 3 nm

�2 and L = 20 nm or L = 128 nm. Plots are
shown for I = 0 (ΔV = 0) and I = 2.0 nA (ΔV = 0.15 V for L = 20 nm and
ΔV = 0.4 V for L = 128 nm). The same calculation parameters of Figure
5 were used. B. Single chain segment density projections on the x,z plane
for the systems in A. The chain shown is grafted at y = 0, x = R and z = 0.

Figure 7. Electrostatic potential color maps for the systems shown in
Figure 5A.
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with respect to the lower half as a function of the total current
(Figure 8C). The latter quantity is defined as:

Nexcess
i ¼ 2π½

Z ∞

0
dz

Z ∞

0
rdrCiðr, zÞ�

Z 0

�∞
dz

Z ∞

0
rdrCiðr, zÞ�NA

ð20Þ
where Ci(r,z) is the molar concentration at r and z and NA is
Avogadro’s number. Figure 8C shows that both the concentra-
tion of anions and cations is depleted in the lower half (i.e., there
is an excess of ions in the upper half, Ni

excess > 0).
An interesting observation is that the concentration polariza-

tion depletion region in Figure 8A and 8B for the systemwithN=
60 is smaller than that for N = 10 (for the same total current).
This observation is supported by the smaller value of Ni

excess for

N = 60 compared with N = 10 for a given total current in
Figure 8C. This dependence on chain length can be traced back
to the polyelectrolyte distribution shown in Figure 5A. In the
system with N = 60, the polyelectrolyte layer readily deforms
with the applied bias, creating a region with a high density of
positively charged segments at the lower entrance of the pore.
The presence of these segments in the lower reservoir decreases
the magnitude of the anion depletion process compared with a
systemwhere almost no segment redistribution occurs due to the
applied potential (N = 10).
The complexity of the molecular organization in the steady

state, described in the previous paragraphs, arises from the
coupling between ion concentration and fluxes, the conforma-
tion of the polyelectrolyte chains and the electrostatic potential.
The question is how this organization impacts the experimentally
accessible current�potential curves. Figure 9A shows that the
I vsΔV curves for the different chain lengths under study present
a linear (i.e., ohmic) response in a region close to the origin. This is
in fact the region discussed in the previous section (low bias
molecular organization and conductance), in which the redis-
tribution of the polyelectrolyte and ions has a minor effect on the
I vsΔV curves and thus the simplified model given by eqs 16�18
is valid. When the absolute value of applied potential is increased
beyond this ohmic regime, positive deviations to linearity appear
for long chains, while negative deviations show up for short
chains (Figure 9B). The drop in conductance with ΔV for short
chains is expected due to the concentration polarization effect.
Moreover, a limiting constant current is expected for applied
potentials larger than those studied in this work.58�60 On the
other hand, the increase in conductance with ΔV exhibited by
longer chains is unexpected. As shown above, increasing the
applied bias deforms the polyelectrolyte layer for long chains,
resulting in a redistribution of the positive polyelectrolyte seg-
ments to the lower mouth of the pore. This process leads to a
decrease in resistance with the applied potential because (i) it
inhibits the formation of the anion depletion layer (as shown in
Figure 8) and it reduces the concentration polarization effect,
therefore enhancing the conductance. This mechanism is sup-
ported by the fact that very long channels (for which the pore
resistance is always larger than the access resistance) exhibit
ohmic and chain-length independent conductance in the poten-
tial range of Figure 9 (see Figure 4S, Supporting Information),
(ii) it decreases the concentration of positively charged segments
inside the pore, increasing the concentration and flux of the

Figure 8. A. Anion molar concentration color maps for the systems
shown in Figure 5A. B. Concentration profiles along the pore axis (r = 0)
for the systems shown in A. Dotted blue lines show the position of the
membrane surfaces. C. Plot of the number excess of anions and cations at
z > 0 (upper half of the pore) as defined in eq 20 as a function of the total
current through the pore.

Figure 9. A. Current�potential curves predicted by the steady-state
molecular theory for system I (chains tethered only inside the pore) for
different chain lengths and surface coverages but conserving the total
number of segments (constant NFG). B. Differential conductance G =
∂I/∂ΔV vs ΔV for the systems in A. Same calculation parameters as in
Figure 5.
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co-ions (cations). For example, the fraction of current carried by
the majority carrier (anions) for I = 1.0 nA (linear regime) is 0.89
for N = 10 and 0.86 for N = 60; on the other hand, for I = 4.5 nA
(nonohmic regime) this fraction becomes 0.85 for N = 10 and
0.76 for N = 60. (iii) The expulsion of polyelectrolyte segments
from the pore also decreases the excluded volume interactions
with both ions. The coupled nature of the problem makes it
impossible to separate the contributions from each mechanism,
although it is clear that the increase in conductance with the
applied bias arises from the reorganization of the long polyelec-
trolyte chains. For instance, a neutral grafted brush (that interacts
through excluded-volume interactions only) does not deform
with the applied bias and thus leads to ohmic conductance
(Figure 5S, Supporting Information). The decrease in resistance
with the applied bias predicted for long deformable polyelec-
trolyte chains creates an experimentally accessible fingerprint for
their presence inside the nanopore.

4. CONCLUSIONS

In the present work, a nonequilibrium molecular theory was
introduced to study ion conductance in cylindrical nanopores
and nanochannels modified with supramolecular structures.
Molecular theories are required to study these systems because
the molecular details are important, but the length and time
scales involved make them formidable problems to attack with
computer simulations. The short nanopores systems analyzed in
this work require a nonequilibrium description of the pore/
reservoir system involving inhomogeneities along at least two
coordinates. This is in contrast to long channels that can be
treated within the Goldman Constant Field (GCF) approxima-
tion because the resistance at pore ends can be neglected. In that
case, the channel conductance can be determined from the
equilibrium concentration of charge carriers (ions) inside the
channel, and the symmetry of the system allows the considera-
tion of only inhomogeneities in the radial coordinate.32,53,58

We have shown that the molecular organization of the pore/
reservoir system arises from the interplay between ion fluxes and
concentration, polyelectrolyte organization, and electrostatic and
nonelectrostatic interactions. Grafting polyelectrolyte chains in-
side a nanochannel enhances its conductance due to the local
increase in counterion concentration required to balance the
charges on the polyelectrolyte. However, this effect is of minor
importance for very short pores where the total resistance is
dominated by that of the reservoirs. In such cases, any increase in
conductance upon grafting polyelectrolyte chains should be due
to the modification of pore outer walls. Along the same lines,
grafting a neutral polymer inside a nanopore decreases its
conductance, and the magnitude of the effect is larger for longer
pores. These results suggest that long channels are more suitable
for sensor applications than nanopores.

For a large applied bias, the organization of the system
becomes very complex and gives rise to unexpected behavior
of the conductance. For example, in the low applied bias regime
the conductance of the pore depends on the total number of
polyelectrolyte segments (Figure 9). In other words, it depends
on the product of chain length and surface coverage but not on
the individual values of these parameters. However, this behavior
is no longer valid in the large applied potential regime because
longer chains at low grafting density are more readily to deform
than short chains at high surface coverage. The deformation of
long chains gives rise to an unexpected behavior, the decrease of

system resistance with the applied bias shown in Figure 9B. This
exemplifies how our intuition and the current theoretical tools
developed for bare nanopores may fail to describe the behavior of
nanopores modified by supramolecular structures if the coupling
between ion fluxes and the conformational degrees of freedom of
the polyelectrolytes are not taken into account.

One limitation of the present approach is that it neglects
transport of momentum in the system and therefore any elec-
troosmotic effects. This contribution to the overall current has
been shown to be of secondary importance in previous solutions
of the NPP and Navier�Stokes equations for surface-charged
nanochannels and nanopores.58 In the case of polyelectrolyte-
modified nanopores, the presence of the grafted polyelectrolyte
can hinder the solvent fluxes through the pore and (as discussed
in Appendix C of ref 52, where off-diagonal Onsager couplings
between charge and mass fluxes are taken into account) blocking
the solvent fluxes will prevent the electroosmotic contributions
to the total current. Thus, we do not expect that the results
presented in this work will be qualitatively affected by electro-
osmotic effects. However, these effects are essential to describe
other interesting phenomena such as mechanical to electric
energy conversion in nanochannels.23,24 Moreover, the behavior
of polymer brushes under solvent flow is an active research
area.66,67 For these reasons, their inclusion in our theoretical
framework remains an important research direction.

The theory presented in this work is based on a mean-field
description of the molecular species in the system, while the mass
fluxes are described within a linear response approximation. The
range of validity of these combined approximations is difficult to
assess. We are however confident about the predictions of the
theory for the present system based on our previous work for
long nanopores that had shown very good agreement between
theoretical predictions and experimental observations32 and pre-
vious work on a simpler system that has shown good agreement
between simulations and linear response�mean field theories.39

We expect that new developments in solid-state nanopores and
macromolecular synthesis will provide systematic measurements
on well-characterized systems, which can be used to test theore-
tical models. In this direction, further work is necessary to expand
our model abilities in order to address the role of the complex
geometries usually found in experiments, such as hourglass,54,68,69

conical,10,11,15,16,18,20,22 and biconical pores.12,14,17,19 Incorpora-
tion of chemical equilibrium and additional nonelectrostatic
interactions (i.e., hydrophobic interactions) is also of interest
for the description of experimental studies involving weak and/or
hydrophobic polyelectrolytes. To conclude, we expect that as the
widespread interest in chemically modified nanopores and
nanochannels continues growing, molecular theories will be
developed to model their equilibrium and dynamical properties
and thus to play a central role in their analysis, understanding,
and design.
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